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SUMMARY

The available NACA and NASA data relating to the carriage and separa-

tion characteristics of external stores are summarized, and some typical

aerodynamic characteristics of stores in the carriage position are pre-

sented. Some of the subsonic interference origins and methods of combining

experimental flow fields with theory to predict store forces and moments are

illustrated by a comparison of calculated and measured store normal force

and pitching moment. The effects of various combinations of speed, dive

angle, airplane load factor, and store density on the separation character-

istics are illustrated by using calculated store trajectories. This paper

includes a bibliography of NACA and NASA reports relative to the release of

stores from airplanes.

INTRODUCTION

Operational experience by the military services during the past year

has focused attention on problems associated with the release of various

types of external stores. While a considerable amount of research relative

to the carriage and release of external stores was done by the NACA in the

past, research on stores during the last lO years has been concentrated

primarily in the area of the release characteristics of internally carried

stores and the effect of external stores on aircraft stability and perform-

ance, with some related work on the separation characteristics of lifting

reentry research vehicles from a carrier airplane. However, in view of the •

current interest in the carriage and release characteristics of external

stores, it was believed that a summary of the available NACA and NASA data

would be useful to those engaged in developing and evaluating analytical

methods of studying these problems.

The purpose of this paperis to describe the configurations which have

been studied and the range of variables covered, to present some typical

aerodynamic characteristics of stores in the carriage position, and to

illustrate the effect of these characteristics on the separation character-

istics of a store under various delivery conditions. A bibliography of

NACA and NASA reports related to the release of stores from airplanes is
also included.
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SYMBOLS

A

az

b

C

Cm

CN

C n

Cp

cx

EAS

is

l

M

2m

q

S

Ss

t/c

W

wing aspect ratio

lateral acceleration, feet/second 2

vertical acceleration, feet/second 2

wing span, feet

local wing chord, feet

w-ir_gmean aerod_u-_c ........._£1U.L'U.2 .t _ u

store pitching-moment coefficient referred to 0.4621,

Store pitching moment

qSsZ

store normal-force coefficient, Store normal force
qSs

store yawing-moment coefficient referred to 0.462Z,

Store yawing moment

qSsZ

.

pressure coefficient

store side-force coefficient, Store side force
qSs

equivalent airspeed, knots

store incidence angle relative to wing reference line, degrees

store length, feet

Math number

airplane incremental load factor, referred to steady equilibrium

flight conditions

dynamic pressure, pounds/foot 2

airplane wing area, feet 2

store reference area, maximum frontal area of body, feet 2

wing thickness ratio

airplane weight, pounds
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Ws

w/s

c_w

7

a /4

store weight, pounds

airplane wing loading, pounds/foot 2

angle of attack of airplane wing, degrees

dive (flight-path) angle, degrees

taper ratio

wing sweep of quarter-chord line, degrees

CONFIGURATIONS STUDIED

/

J

The major portion of the wind-tunnel studies for wing-pylon-store con-

figurations which are applicable to the current problem area utilized one of

the two test methods shown in figure 1. The top sketch illustrates the method

in which the aerodynamic forces and moments of the store in the carriage posi-

tion are measured by means of a strain-gage balance mounted within the store

and attached to the wing pylon. Data obtained by this method can be used to

determine the store carriage loads and the initial separation characteristics

of the store. The lower sketch illustrates the method in which the store is

supported by a sting through an internal strain-gage balance. In addition to

providing carriage loads, the sting-support method allows the store to be

tested at various positions and attitudes relative to the airplane and thereby

provides store aerodynamic data which can be used to compute both the release

and the trajectory characteristics of the store.

Comparisons between computed trajectories using aerodynamic data obtained

by this technique and trajectory measurements made in flight and with free-fall

techniques are given in references 1 and 2, respectively, and indicate a satis-

factory agreement.

The use of free-fall and forced-ejectlon methods by NASA has been directed

primarily toward ejection from bomb bays rather than the release of external

stores, and will not be discussed here. However, a bibliography of this work

is included. It should also be pointed out that problems associated with

scaling (refs. 3 to 6) and simulation of release conditions, such as dive angle_

tend to limit the usefulness of the free-fall and forced-ejection methods. The

configurations studied by the techniques shown in figure 1 are described in fig-

ures 2 and 3- The configurations studied by the pylon-support method are shown

in figure 2 3 and the configurations studied by the sting-support method are

shown in figure 3. A bottom view of the airplane is shown and the various

stores tested are shown in the carriage position. The alternate location of the

store is shown by the dotted outline. The table under the sketches lists some

of the pertinent geometric characteristics of the wings, the Mach number ranges

of the test, the facility used, the reference containing the data of the more

important variables studied, and the type of data obtained.
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Wing planforms cover the sweep range from0 ° to 47 ° and include a 60 °

delta wing. Aspect ratios from 4 to 7.7 were covered. The Mach numbers

ranged from approximately 0 to 2.01. Both finned and unfinned stores have

been investigated. In general, the configurations studied are representative

of rather large stores primarily because the balances required for the smaller

stores were not available. Five-component force data are available for con-

figurations 1 to _; pressure distributions on the stores were measured for con-

figurations 6 to 8; for configuration 8, complete wing pressure distributions
were measured without the store and with the store in two vertical locations.

Five-component force data have also been obtained on configurations 9 to 12,

and for the supersonic studies on configurations ll and 12 store force data

have been obtained for a large number of positions within the shaded area for

several vertical store locations. For the subsonic studies (configurations 13

and l_), the local angularities in both the longitudinal and lateral planes and

the local flow velocities were measured at various vertical locations beneath

the wing and fuselage for the range of spanwise and chordwise locations indi-

cated by the dashed line for the unswept _-lng and the shaded area for the swept

wing. These configurations are similar to two of those used to measure store

force data and therefore are useful not only in evaluating flow-fleld theories

but also in evaluating methods of predicting store forces.

r
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TYPICAL AERODYNAMIC CHARACTERISTICS

Inasmuch as the current operational problems are primarily associated with

subsonic deliveries, the remainder of this paper will deal with the subsonic

case.

Configuration _ was chosen to illustrate some typical aerodynamic charac-

teristics of a store in the carriage position and to show the effects of deliv-

ery conditions on release characteristics and is presented in figure 4. The

pertinent geometric characteristics of the wing and the location of the store

beneath the wing are indicated. This configuration was selected because of its

similarity to configuration 14, for which complete flow-field surveys were

available.

Before presenting the various aerodynamic characteristics of the store, a

somewhat detailed look at the store normal-force and pitching-moment character-

istics will be made to illustrate the order of magnitude of the various flow-

field induced effects and to indicate the effectiveness of simplified theory

for predicting the store forces and moments. The calculations are based on the

application of the measured flow field (ref. 7) to body-fln theory and ignore

the mutual interference effects between the wing and store. Figure _ shows a

comparison of the calculated and measured store normal-force coefficient with

wing angle of attack for the body, the fins, and the body-fin combination. For

the body alone it will be noted that the calculated buoyancy effect (shown by the

short-dash line) associated with the wing-body-induced static-pressure gradient

is rather large and produces a negative normal-force-curve slope and a large

positive normal force at _ = 0 °. The positive force at _ = 0 o is, of

course, associated with the wing-thickness-induced buoyancy and will increase

with increasing wing thickness ratio. The wing for this case was 6 percent thick.

The effect of the flow angularity on the body (indicated as the local _ effect)
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includes both the induced-angle-of-attack and induced-camber effects determined

by the method of reference 8 with the crossflow-separation effects accounted

for by the method of reference 9- The sum of the buoyancy and local m effects

shown by the solid line indicates a positive value of normal force at _w = O°

and is in fairly good agreement with the experimental data. The estimate of the

fin increment accounting for the local angle-of-attack distribution, shown by

the solid line in the lower left of figure 5, indicates a slope of about one-

half of that predicted for the isolated fins and reasonably good agreement with

experiment. The reduction in slope is, of course, associated with the wing-

lift-induced downwash characteristics while the positive normal force at

c_ = 0° is due to the thickness-induced upwash. The results for the body-fin

c_mbination, shown at the lower right of figure 5_ also indicate fairly good

_eement with the experiment.

The calc_ated and measured pitching-moment coefficients for the body. 3

the fins, and the body-fln combination are shown in figure 6 as functions of

wing angle of attack. The methods used were the same as those previously

described in connection with the normal force. For the body alone, the

buoyancy effect gives a stabilizing moment whereas the local angle-of-attack

effect calculated by the methods of reference 4 gives an unstable slope. The

sum of the buoyancy and local-angle-of-attack effect is shown by the solid line

and indicates the same slope as the experiment over most of the angle-of-attack

range; however, the magnitude of body pitching moment predicted is considerably

higher. The estimate for the fin accounting for the local-angle-of-attack

effect and shown on the lower left of figure 6 shows reasonable agreement at

the lower values of _w; however,, at the higher value of c_ this agreement

deteriorates. The discrepancies between the calculated and experimental values

of pitching-moment coefficient for both the body and the fin are additive so

that the estimate for the body-fin combination gives_ in general, poor agree-

ment with the experiment. This figure serves to point out the need for more

sophisticated theories to predict the store pltching-moment characteristics in
the interference flow field.

Experimentally obtained aerodynamic characteristics for the example con-

figuration (configuration 5) at a Mach number of 0.50 are shown in figure 7.

Thenormal-force and pltching-moment curves are the same curves that were dis-

cussed on the two preceding figures and are presented here for completeness.

In the lateral plane 3 a positive value of side-force coefficient (Cy),

indicating a force toward the fuselage, is obtained at _w = 0°. As o_ is

increased, a change in sign of Cy occurs. The significant _oint to be noted

about the yawing moment is that the lateral center of pressure lies ahead of

the store center of gravity for the complete wing angle-of-attack range shown,

and, as a result, the nose of the store will be yawed in the direction of the

side force. Figure 8 further illustrates the change in sign of side force

with angle of attack and shows the experimental store pressure distributions

measured on configuration 8 at _w = O° and _ = 8° . The pressure distribu-

tion on the isolated store is also shown for reference. Note that at _w = O°

high negative pressures are acting on the inboard side of the store whereas at

c_w = 8° high positive pressures are obtained on the inboard side of the store°
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SEPARATION CHARACTERISTICS

Since all the curves shown in figure 7 are displaced at _w = O° and in

the lateral case change sign with wing angle of attack, airspeed would be

expected to have a large influence on the forces developed on the store at

release. To illustrate the order of magnitude of this effect on the initial

store trajectory, the linear accelerations acting on the store at release are

shown in figure 9 for the example Configuration.

On the left of figure 9, the effect of equivalent airspeed on the vertical

acceleration at the store fin for a store at is = 0° relative to the wing

chord line, is shown for store weights of 180 and 960 pounds. The vertical

acceleration at the store nose at is = -5° is also shown as a function of

airspeed for store weights of 180 and 960 pounds. As indicated by the arrows,

positive acceleration is toward the airplane wing. The points on the store for

which the acceleration is shown are the most critical points from contact con-

sideration when both the store normal force and pitching moment are accounted

for. The weights were taken to represent near minimum and maximum welghts for

this class of store. The wing angle-of-attack variation used in the calcula-

tion corresponds to the angle of attack required for steady level flight of the

carrier airplane at awing loading of lO0 lb/ft 2 over the speed range and there-

fore decreases with increasing speed. For awing loading of lO0 lb/ft 2 this

configuration gives an airplane weight of 18 650 pounds. For the lightweight

store at i s = 0° the fin accelerates toward the wing and this acceleration

increases rapidly with airspeed, and results, of course, #rom the buoyancy effect

at _w = 0°" When the store is mounted with -5 ° incidence relative to the wing,

the normal force at mw = 0° is negative and this trend is reversed; that is,

as speed is increased and store weight reduced, the store is accelerated away

from the wlng at a faster rate.

The curves on the right of the figure show that, as speed is increased,

the lateral acceleration changes from an acceleration away from the fuselage to

an acceleration toward the fuselage, as indicated by the variation of Cy and

Cn with wing angle of attack in figure 7-

To account for the effect of dive angle on the store separation character-

istics, a three-degree-of-freedom system of motion equations was used to calcu-

late store trajectories in the longitudinal plane. This effect of dive angle

is illustrated in figure lO for a 960-pound store released at 530 knots.

On the left of figure lO calculated trajectories are shown at a dive

angle T of 0° for initial store incidence angles of 0° and -5° , and on the

right of the figure at a dive angle of 75 ° also for initial store incidence

angles of 0° and -5 ° .

At zero dive angle the weight of the store is essentially normal to the

aircraft reference and the initial acceleration corresponds to that shown in

figure 9 by the dashed line at 530knots. When the store is released contact

does not occur. For a dive angle of approximately 75 ° the normal weight com-

ponent is reduced by the cosine of the dive angle and a component of the weight
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goes into thrust which accelerates the store relative to the carrier airplane.

Since the store normal-force curves are displaced at _w --0°, the reduction in

store normal force resulting from the change in _w required to maintain steady

flight on the 75 ° flight path is insignificant relative to the reduction of the

gravity component. As a result, for is = 0°, the store normal force approxi-

mately equals its normal weight component and the nose-down pitch rotation com-

bined with the forward acceleration of the store relative to the airplane causes

the store fin to contact the trailing edge of the wing. However, at is = -5 °,

contact is not indicated. Although the dive angle at which contact is shown

for this store is large, a store having larger fins or located beneath a thicker

wing section, where the buoyancy effect would be greater, would be expected to

contact the wing at lower dive angles. The results of the calculated trajec-

tories for the example configuration at i s = 0° are summarized in figure ll.

The lines or boundaries on the left of the figure represent the maximum

dive angle for release of a 960-pound store without contact between the fin and

airplane wing as a function of equivalent airspeed, under conditions of steady

flight and imposed incremental load factors of -0.25 and -0.5. Contact is indi-

cated on the hatched side of the boundary. The dashed line shows the boundary

obtained if compressibility effects are neglected. (The compressibility

effects are based on sea-level conditions. ) For the store-airplane configura-

tion illustrated here the reduction in store normal force and increase in drag

associated with the higher Mach numbers opens the boundaries at the higher air_

speeds. Data obtained on airplanes during attack missions indicate that at th_

instant of ordnance release the airplane is quite often in a pushover. For

certain delivery techniques, a pushover is required to offset the horizontal

drift associated with increases in speed during a dive. Figure II indicates

that severe penalties in both maximum permissible dive angle and flight speed

may be encountered if the store is released during a pushover.

On the right of the figure the effect of store weight on contact at

release is shown as a function of equivalent airspeed for flight-path angles

of 0° and 60 °. The boundaries indicate the minimum weight at which the store

can be released without contact over the speed range for the two dive angles.

In this figure contact is indicated below the boundary.

CONCLUDING R]_4ARKS

The available NACA and NASA data relating to the carriage and separation

characteristics of external stores have been summarized. A comparison of calcu-

lated and measured store normal force and pitching moment has been presented to

illustrate some of the subsonic interference origins and methods of combining

experimental flow fields with theory to predict store forces and moments. This

comparison indicates that additional work is required to develop completely

satisfactory analytical methods of obtaining store moments in the interference

flow field. Therefore, at present it appears that the best method is to meas-

ure the store characteristics in the wind tunnel. When the aerodynamic charac-

teristics of a store in the wing flow field are known, the store trajectories

can be calculated with reasonable accuracy. The effects of various combinations

of speed, dive angle, airplane load factor, and store density on the separation

characteristics are illustrated by using calculated store trajectories.
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FORCE-MEASUREMENT METHODS
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PYLON----_ ! --
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CONFIGURATION

Ac/4

A

tic

M

VARIABLE

REFERENCE

FACILITY

CONFIGURATIONS STUDIED
PYLON SUPPORTED

FORCE DATA

1",.,4

I 2 3

4" 56" 45 °

4.0 3.6 4.0

TAPERED
0.06 0.10 0.06--0.03

050",-0.91 0.66---1.03 0.80°1,45

4

45"

4.0

0.06

1.61

SPANWISE
POSITION

I0 II

HS 7'xiO' FLIGHT

PRESSURE

DISTRIBUTION

,r

5 6

47" 40"

4.0 3.4

0.06 O. I0

WING AND

STORE

PRESS. DIST•

/,

7 8

35 ° 27.5"

5.2 7.7

TAPERED TAPERED
3.12 oO.II 0.10 _0.06

0,50--0.91 OIBO_ID_ D.55-.-I.03 0.23

SPANWlSE 81 SPANWISE VERTICAL
SPAN Wlsi[ CORDWISE POSITION POSITION

POSITION LOCATION

LANGLEY

12 13 I0 14 15 ANOI6 [UNPUBLISHED)

8' TPT 4' SPT HS 7'xlO' 16'TT FLIGHT HS 7'xlO'

Figure 2

;ONRGURATION

_" c/4

A

t/c

M

VARIABLE

REFERENCE

FACILITY

CONFIGURATIONS STUDIED
STING SUPPORTED

FORCE DATA

0 = 45 °

4.0 4.0

0.04 0.06

0.75 _ 1.96 0.70--1.96

STORE SPANWlSE AND

VERTICAL LOCATION

1 7

9" X 112_ BDT9"x 12" BOT

FLOW-FIELD SURVEY

13II 12

45 ° 60" 6 ° 45 °

4.0 2.31 3.0 4.0

0.06 0.04 0.06

1.61

STORE LOCATION

1.61 _ 2.01

0.04

='0

LONG. AND
VERTICAL

SURVEY

i STORE SIZE AND

LOCATION

wO

COMPLETE
SURVEY

19, 20,21,22 23 7 7 AND 24

4' SPT 4' SPT 3OOMPH 7'XlO' 5OOMPH 7'xlO

Figure3
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EXAMPLE CONFIGURATION
A =4.0; ),=0.6; -4.c/4=46.7°; 65A006; STORE FINENESSRATIO=9.34

(CONFIG.5)

-3_-;_:_-._

'--.193_ _6

J .... r

Figure4
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cNo

I
°,2

!

..4_

.4

CN2

0

°d

COMPARISONOF CALCULATEDAND MEASURED NORMAL FORCE
M=O.5

BODY

-',.,I _ f.f'_ LOCALa EFFECT

:o',,,_ /,/" /--EXPERIMENT

BODY+ FINS

- i FINS / j

EXPE/IMENT7 ,,/_

- _(_,AL a EFFECT

/ _,/ _-ISOLATED FINS

I I I I
6 4 S _2 16

aw, DEG

l LCALCULATEII I I D

-4 0 4 8 12
aw, DEG

I
16

Figure5
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.3

.2

Cm ,

.I

0

-.I

COMPARISON OF CALCULATED AND MEASURED
PITCHING MOMENT

BODY M = 0.5
I

ILOCAL 

__ o "TOTAL/_/" o ZEXPERIMENT
-.! o--_- .....

_'f;UOY&NCy __/"

I i f I I

FIN_._SS
0 ¢_

-.2- I I I I I

4 0 4 8 12 16

aw, DE_

BODY + FINS

I/
I _ EXPERIMENT
I [ I I I

-4 0 4 8 12 16
ew,DEG

Figure6
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MEASURED CHARACTERISTICS OF STORE AT RELEASE;M=0.5

-4 0 4 8
=w, DEG

TOWARD
FUSELAGI

Cy 0

-.I
=d

NOSE TOWARD
FUSELAGE

.I

Cn 0

-II
-4-4 0 4 8

aw,DEG

I !
0 4 B
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0 4 8
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Figure7
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EXPERIMENTAL STORE PRESSURE DISTRIBUTION FOR
CONFIGURATION 8

M =0.23

_'_:=,_E IN WING

/ K" __o._
/_i/ ---,_o_,,_osTo_E

'f
wING_.---- W_.G_.---_:U_-/----

TOWARDFUSELAGE\..j._

SECTION A-A SECTION A-A
ow=O e Ctw=8°

Figure 8

TOWARD
WING I20

0 Z ,

I 80

40

FT/SEC 2
0

-40_
-80

-120 ,

STORE ACCELERATIONS AT RELEASE
W/S = I00 LB/SQ FT; W = 18650 LB

We, LB _
180 _ NOSE =y t_...3_

960 -- _ TOWARD
•FUSE.

+O z ]

f / is 0 _

.J._ Oy, FT/SEC 2"

0 300 400 500 600 0 300 400 500 600

EQUIVALENT AIRSPEED, KNOTS

is=CY' /

Figure 9
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EFFECT OF DIVE ANGLE ON STORE TRAJECTORY
EAS--530 KNOTS; W=18650 LB; Ws=960LB

,_. ---T,=====_ is= 0 °

.13.............. %',

%
Ws

7"=0 °

t %

d

. . • , 7"= 7'5°

iS= -5 °

FigurelO

= 0 o
s

DIVE ANGLE,
7, DE(;

I00

8O

60

4O

2O

CONTACT BOUNDARIES
W/S=IO0 LB/SQ FT ; is=O=; W= 18 650 LB

CONTACT An

__._-.25

-.50

Ws=960 LB

I I I I

_00 400 500 600

Ws, LB

I000,

800

600

400

2OO

Z_n=O

I I I ,J

_00 400 500 600
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Figure ll
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